

Greg Papadopoulos EVP and CTO Sun Microsystems, Inc.

Takeaways

- Business demands fuel IT demand
 - Still in the first phases of network computing
- Decision point
 - Mask complexity through people or eliminate through engineering
- Innovation matters

The Revolution

RFID

The Revolution

Bottom Line

- Still in the first phases of networking
 - Expect the number of networked things to grow by another factor of 1M
 - New value from automating still-manual processes
- Expect radical transformation of SW and systems
 - Systems, in particular, are at a watershed
 - Mask complexity through people or eliminate through engineering

The New Software

Shrink-Wrap

OS400 AS400

BSK AIX Power

VMS VAX

Irix MIPS

IPS

Aegis Ultrix
Alpha

MVS 370

> Solaris Sparc

> > **HP-UX**

Precision

Linux x86

MAC OS Power

> Windows x86

Application scales from 1 to perhaps 100's of users

For Desktop:

1 copy SW = 1 copy HW

The New Software

The New Software

The Operations Challenge

Was...

- Availability
- Performance
- Scale

Price/ Performance

The Operations Challenge

Was...

- Availability
- Performance
- Scale

Price/
Performance

Becoming...

- Service Level
- Efficiency
- Security

Total Cost of Service Level

The Emperor Has No Clothes

- Network computing is wildly complex: no discernible economy of scale
- 75+% of IT budgets going to people + operations
- 15–20% typical utilization
- Out of the \$2.4T WW ICT spending only a tiny fraction goes to HW/SW systems

Decision Point

Mask Complexity or Engineer It Away

Old Systems Are Components in the New One

Server connected to networks

Old Systems Are Components in the New One

Server connected to networks

What Is O/S for This

What Is O/S for This
Now System?

Grid Computing Today at Sun

13,500 CPUs in 3 cities for processor design

- SPARC microprocessor design facilities in Sunnyvale, Austin, Burlington
- Sites use a departmental Cluster Grid approach normally
- Workload is distributed across all sites in an Enterprise Grid approach to meet peak load requirements

22 years compute time/day 98% average CPU usage 24/7/365

THROUGHPUT COMPUTING

- New design approach for the UltraSPARC® processor family
- Eclipses throughput of today's processors by a magnitude of up to 15-30x
- Quantum reduction in the cost of network computing — without software disruption

The Big Bang Is Happening — Four Converging Trends

Network Computing Is Thread Rich

Web services, Java[™] applications, database transactions, ERP...

Moore's Law

A fraction of the die can already build a good processor core; how am I going to use a billion transistors?

Worsening Memory Latency

It's approaching 1000s of CPU cycles! Friend or foe?

Growing Complexity of Processor Design

Forcing a rethinking of processor architecture – modularity, less is more, time-to-market

Memory Bottleneck

Relative Performance

Memory Bottleneck

Relative Performance

Typical Complex High Frequency Processor

^{*}Source: Microprocessor Report, Richard Sites, It's the Memory, Stupid!, August 1996

Chip Multithreading (CMT)

CMT—Multiple Multithreaded Cores

Throughput Computing

UltraSPARC® IV

1st GENERATION CMT PROCESSOR FOR MID/HIGH END SYSTEMS

- First milestone in Sun's Throughput Computing roadmap
- Up to twice the throughput of today's UltraSPARC III processor
- Protects customer investment in hardware, software and staff
 - Upgrade path
 - Binary compatibility across time and product line

The Three Waves of SPARC Innovation

CMT SMP Price/Performance RISC 1980 2010 1990 2000

Takeaways

- Business demands fuel IT demand
 - Exponential demand as everything becomes connected
- Decision point
 - Eliminate complexity through engineering
- Innovation from Sun
 - In Software
 - In Systems

Greg Papadopoulos EVP and CTO Sun Microsystems, Inc.

